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DEVELOPMENT OF AN ADAPTIVE BOUNDARY-FITTED COORDINATE CODE
FOR USE IN COASTAL AND ESTUARINE AREAS

PART I: INTRODUCTION

1. The mathematical modeling of the hydrodynamics of a body of water
plus the transport and dispersion of a constituent within that body involves
the solution of a set of partial differential equations expressing the conser-
vation of mass, momentum, and energy of the flow field along with a transport
equation for the constituent. These equations involve derivatives with re-
spect to time as well as three spatial dimensions. However, a simplificatior
that is often made in treating relatively shallow bodies of water which are
well mixed over the depth is to vertically average the three-dimensional (3-D)

equations to yield a two-dimensional (2-D) set for nearly horizontal flows.

Numerical Techniques

2. Since the governing equations are nonlinear, analytic solutions in
general cannot be found and one is forced to resort to numerical techniques to
obtain solutions. The two most common such techniques are the finite differ-
ence method (FDM) and the finite element method (FEM). There are, of course,
both advantages and disadvantages to each of these approaches.

3. Perhaps the most often quoted advantage of the FEM is that with this
approach, physical boundaries coincide with computational net points. There-
fore the modeling of flow within an irregular domain can be more accurately
handled than with the older rectangular FDM wherein the approach is to con-
struct a rectangular grid over the domain, which forces the boundaries to be
represented in a "stair-stepped" fashion. However, a disadvantage of many
finite element models is the excessive computational time required compared
with typical finite difference models naving the same number of mesh points,
As discussed by Johnson, Thompson, and Baker {1984) this occurs because of the
manner in which the system of resulting algebraic equations i3 usually solveld
in finite element models. An additional disadvantange is that the FEM is more
cumbersome to code into a computer model than the FDM., This can be a prablenm
not only during the development of the model but also can increase tae level

of =ffort required during later model modifications.




B aas Al ook aaiiis oun ik aubus auiat agils bR e s seen dbbdbo gt el sl Aol Sl e B A T B DR e
e i e A AT AN N A G i ghar- e e R . e o i it A b el sul sl g AL AN A A AR A BB AR

Boundary-Fitted Coordinates Concept

4, Accepting that the FDM possesses an advantage in simplicity and per-
haps computational costs, a logical question is whether or not one can develop
ways to circumvent the major disadvantage of having to represent irregular
boundaries in a stair-stepped fashion. One method is to make computations on
curvilinear grids so that one of the curvilinear coordinates always follows a
boundary. Vertically averaged hydrodynamic models developed by Johnson (1980)
and Sheng and Hirsh (1984) are examples of models employing a general non-
orthogonal curvilinear grid. Through coordinate transformations, irregular
boundaries and variable grid spacing can be more accurately handled while
still making use of the simplicity of finite differences to obtain solutions.
Since the bhoundary-fitted coordinate system has a coordinate line coincident
with 311 boundaries, all boundary conditions can be expressed at grid points;
and normal derivatives can be represented using only finite differences be-
tween Zrid points on coordinate lines. No interpolation is needed, even
though the coordinate system is not orthogonal at the boundary. A general
discussion is given by Thompson, Warsi, and Mastin (1985).

5. To enable efficient flow-transport modeling on boundary-fitted
grids, a numerical generator is needed to provide the (x,y) location of the
curvilinear coordinates. 0One of the earliest grid generators was developed by
Thompson, Thames, and Mastin (1977) with a later version called WESCOR pro-

vided by Thompson (1983),

WESCOR

. The WESCOR code generates a boundary-conforming curvilinear coor-
linate system for a general 2-D region with boundaries of arbitrary shape and
with houndary intrusions and internal obstacles, such as islands, arbitrary in
shape and number,  The grid is generated from the numerical solution of a set
of elliptic vartial differential ejuations by accelerated point Gauss-3eidel
{teration,

! fhese eqaatinns are writhten in the transformed space, which is in-
here-tly weaobangalar with a spparse 2rid. Al computations, both to generate
the w1 and subsequently Yo solve partial differential equations for physiocal

problems on the grid, are {one in this Sransformed space, so that all boundary
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conditions can be represented on grid lines without interpolation. This
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allows codes to be constructed that treat completely arbitrary regions with
rectangular DO loops, with the boundary shape specified simply by an input
boundary point distribution. It is thus possible to treat arbitrary boundary
shapes naturally with FDM's, although such grids can also serve in finite ele-
ment solutions,

8. The WESCOR code incorporates an automatic evaluation of two control
functions in the elliptic generation system from the specified boundary point
distribution that serves to make the grid lines in the field follow the gen-
eral relative distribution of points on the boundaries. The code also allows
for this automatic grid line control to be augmented by input to concentrate

grid lines near other grid lines and/or points.

Need for a New Grid Generator

b

9. As noted, much of the numerical modeling of free-surface hydro- }: N
dynamics involves the depth-averaged computation of circulation patterns in E?S:'
estuaries and coastal areas to provide input to numerical transport-diifusion T:Si;;
models of sediment and water quality parameters. In many of these problems a T
major concern is the representation of winding navigation channels on the f?i?

numerical grid. Existing boundary-fitted grid generation codes, e.g. WESCOR,
cannot generate adequate grids for such problems, thus a grid generation code
that forces grid points to cluster along an internal navigation channel is
required before finite difference models based upon boundary-fitted coordi-
nates can be efficiently applied to coastal and estuarine areas. In a recent
study by Johnson, Thompson, and Baker (1984) it was recommended that an
estuarine/coastal fixed-grid generator model based upon adaptive grid tech-
niques be developed.

10. To accomplish this, the 2-D numerical grid generation code WESCOR
has been extended to include adaption of the grid to concentrate lines ac-
cording to a depth distribution. The present extension automatically con-
centrates grid lines according to increasing depth. Two adaption mechanisms
are included, one based on the variational formulation of Brackbill and

Saltzman (1982) that uses the calculus of variations to produce a system of

partial differential equations with competitive enhancement of grid concen-

tration, smoothness, and orthogonality, and the other based on a simple
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extension of the control functions in the original elliptic generation in
WESCOR.

11, With either adaptive mechanism the code first generates a grid
using the original WESCOR system without regard to depths. The input depth
distribution, which is specified by an arbitrary arrangement of points with no
order or pattern, is then interpolated onto this initial grid. No further
interpolation is needed as the adaptive grid generation system is solved for a
grid that is concentrated according to increasing depth.

12. In the following sections, discussion of the theory of the adaption
mechanism, the interpolation procedures, input required, and finally an exam-
ple application are presented. User instructions and sample job streams are

presented in the appendices.
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PART I1: ADAPTIVE GRIDS

13. The generation of adaptive grids is discussed in detail by
Thompson, Warsi, and Mastin (1985) and a recent survey is given by Thompson
(1985). A discussion of potential applications in numerical hydrodynamic
modeling is given by Johnson, Thompson, and Baker (1984). Briefly, an adap-
tive grid senses gradients of some physical quantity and adjusts itself auto-
matically to better resolve those gradients, i.e., to concentrate lines in the
nigh gradient regions. (The adaption here is through movement of the grid
points, not the addition of more points.)

14, With the time derivatives at fixed values of the physical coordi-
nates transformed to time derivatives taken at fixed values of the curvilinear
coordinates, no interpolation is requirec when the adaptive grid moves. The

time derivative transforms as follows:

where §,§ are the components of the grid speed. The computation thus can be
done on a fixed grid in the transformed space, without need of interpolation,
even though the grid points are in motion in physical space. The influence of
the motion of the grid points is registered through the grid speed appearing
in the transformed time derivative.

15. Several considerations are involved here, some of which are con-
flicting. The points must concentrate, and yet no region can be allowed to
become devoid of points. The distribution also must retain a sufficient
degree of smoothness, and the grid must not become too skewed, else the trun-
cation error of equations solved on the grid will be increased, This means
that points must not move independently, but rather each point must somehow be
coupled at least to its neighbors. Also, the grid points must not move too

far or too fast, else oscillations may occur.

Variational Formulation

15. Thus, on the one hand, there is a need to force grid points to con-
centrate near large solution gradients; on the other hand, there i3 a need to

generate grids that are relatively smooth and do not deviite too much from
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being orthogonal. The calculus of variations is well suited to handle such
problems since integrals over the grid can be written that measure the three
desired features discussed above, namely, {(a) a concentration of grid points
near large solution gradients, (b) a smooth distribution of grid points, and
(¢) a relatively orthogonal grid. The variational formulation of adaptive
grids is discussed in detail by Brackbill and Saltzman (1982) and by Thompson,
Warsi, and Mastin (1985). A brief discussion follows.

17. The area of a computational cell in two dimensions (the volume in

three dimensions) is given by the Jacobian, J , of the mapping:

J = XY~ X e (2)

Therefore, if the integral

I, - I{w(x,y) J dA , (3)

which is a measure of the weighted variation of the computational cell size
over the grid, is minimized for some weight function w(x,y) , which is
related to the solution gradient, a concentration of grid points in high
gradient regions can be obtained. In other words, where the weight function
wix,y) Dbecomes large the cell size becomes small, and where w{Xx,y) becomes
small the size of the computational cell becomes large.

18. Likewise, the smoothness of the grid is measured by the integral

. 2, 2
I - é[(v&) (Vn) ]dA (4)

with the orthogonality measured by

1 - fovg - wmeJ?

o dA (5)
D

where the J3 is added to cause orthogonality to be emphasized more in larger
cells., Note that Vg « Vn = 0 for an orthogonal grid. Therefore an adaptive
grid generator can be developed by minimizing a sum of the three integrals

given in Equations 3-5, i.e.,




19. From the above expressions for 1I_ , 1

3 and I we have the

dimensional relations

Is‘~ EE L2 H Io'~ Eﬁ L L2 ; Iw ~ W EE L2
L L N N
Wwhere
N = characteristic number of points
= characteristic length
= average weight function over the field
WL fw(x,y) dA
A
D '74
Thus, for Equation 6 to be dimensionally correct, we take xffﬁ
y

y
N N 1
= ' - = ' —_— —
Ao Ao (L) and Aw Aw (L) W

where Aé and A& are positive constants. The characteristic length and
number of points might logically be taken as the square roots of the total

area and the total number of points in the field, respectively.

-

. ?

20, Obviously, by selecting appropriate values of i , AQ , and Xé

grids that emphasize smoothness, concentration of grid points, or orthog-

B
S s
. ST

onality can be generated, The variational formulation thus provides a com-

petitive ennancement of these three grid characteristics. A note of caution
concerning orthogonality is perhaps needed. Purely orthogonal grids cannot be
generated when prescribing the location of boundary points, even if the con-
dition Vg » Vn = 0 is enforced. Since derivatives of the coordinates have
to be specified to satisfy orthogonality at the boundaries, specifying the
location of the points overspecifies the problem with seoond-order partial
differential equations as the grid generation system, Trerefore, in order to
generate a strictly orthogonal grid, the boundary points must ve allowed to
move on the boundary. In many cases this constitutes a major restriction on
the generation of a useful grid. Therefore large values of XS compared W~LitLR
values of Aé and AL Wwill only ennance tne orthogonality of tne grid., In
general t1ve grid is still nonorthogonal, and all terms in the governing trans-
formed partial differential equations must be retained.

21, For a 2-D adaptive grid generator, partidal differential equationg
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for the solution for the physical coordinates (x,y) are desired. These are
obtained through the calculus of variations applied to the minimization of the
sum of integrals in Equation 6. In general, if we wish to find functions
¢1(x,y) that are differentiable on (x,y) and satisfy fixed constraints on

the boundary of the domain that minimize some integral functional

g A
= x,y,¢i, aT, "a—y‘— dx dy (8)

D
the calculus of variations gives that ¢i(x.y) are the solutions of the

Euler-Lagrange equations

Y T
! [W] a¢i-o )

22. The 2-D Euler-Lagrange equations for the minimization of the sum of

integrals in Equation 6 are given by Brackbill and Saltzman (1982) as

A
2 'w oW
b1x55 + b2x§n + b3xnn + a1y£€ + a2y€n + a3ynn = =J 5 W o
(10)
A
a x + ax + ax +c.y +CcLy + Ccly = —J2 .. W Eﬂ
17¢g¢g 27En 37nn 17 Eg 27 gn 3" nn 2 " dy

For completeness, the coefficients are reproduced from the cited paper and

presented below:

a, = i_a + i wa + ) a
i 38, W oW 0 0,
i i i
b, = A Db + A wb + A b i=1,2,3
i S s W oW 0 O,
i i i
e, =X ¢ + X we + X cC
i W oW, 00
i i i
a = -Aad ; b = Ba; ¢ = Ca
s1 s s
a32 = 2AB ; b82 =~ ~2BR ; c82 = 12C8
= =AY = BY = Y
as3 053 B cS3 C
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where
2 2 2 2
A =x + X B = + , C = +
e T *n¥n Ye " Vq Xe ¥ ¥n
and
2 2 2
X+ X X _ + X+
Y. in y s - *eXn ygyn v £ YE
3 ' 3 ! 3
J J J
a ., = -X b = y° = X
wi wnt wl " Yn wl  n
aw2 = xEy + xnyE , bw2 = —ZyEyn ' C.o = -2x€xn
2 2
a ., = =X , b . = c . =X
w3 e w3 ~ Vg0 w3 £
a = X b = x2 c -yl
01 wn' Yot T Xy o1 = ¥y

Equation 10 constitutes the variational adaptive grid generator used in the

present code.

Control Function Formulation

23. The elliptic generation system used in the WESCOR code is as
follows:

X - 28X + YX + aPx_ + YQx_ =0
* 123 8 En an % g . n
(1

-2 + Y + aP + Y =0
ay&& Byin ynn @ yE Qyn —
o
where now the coefficients are redefined as ;?_.;?
ey
B
a = x2 + y2 aNata

"
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Here P and Q are the control functions that serve to concentrate the grid
lines,

24, In one dimension, with y,_ = xn = 0 , these equations reduce to

£

XEE + PXE =0

+ =0
ynn Qyﬂ

Now if the product of a weight function w and the grid spacing is equally

distributed over the grid we have, in one dimension,

wx, = constant

g

or
wX +wx, =0

123 £°E

Then by analogy we make the connection

Generalizing we have
W W
- & -0
P=—, Q== (12)
Equation 11, with the control functions evaluated from Equation 12, consti-

tutes the adaptive generation system based on the original elliptic system of
the WESCOR code.
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PART III: DEPTH INTERPOLATION

25. A basic input to depth-averaged hydrodynamic models is the water
depth associated with each computational cell, These depths, relative to some
datum, are normally obtained from National Oceanic and Atmospheric Administra-
tion (NOAA) charts. An efficient grid generator that forces grid points to
cluster in navigation channels through adaption to the water depth requires
the interpolation of the input depth field determined from the NOAA charts.
The number of input depth points and their distribution should be arbitrary.

Various interpolation schemes that have been incorporated are discussed below.

Taylor Series Expansion About Nearest Depth Point

26. With (;,y) the nearest depth point to a grid point (x,y), the depth
f(x,y) at the grid point is given by a Taylor series expansion about the

depth point as follows:
Flx,y) =fX, ) + F(x-X) +f(y -9 +1¢ (x-%2
? ! X y 2 T xx

CEe, DI G -R =D ()
where all derivatives are evaluated at the depth point.

27. These derivatives are determined by Taylor series expansions of the
given depths at depth points neighboring the one in question about the latter
(cf. Figure 1). Thus if the five nearest depth points to the depth point
(x,y) are (xi,yi) i=1,2,3,4,5 , we then have

£, = £ix,y) + £ (x; - X) + folyy - y)

1 -2 1 -2
Fl fxx(xi X) o+ 5 fyy(yi y)

+
-x - v i = Y
+ fxy(xi X) (yi v) i 1,2,3,4,5 (14)

Since the left sides here are known as values at depth points, this system

constitutes five equations for the five derivatives at the depth point <;,;>.

If fewer derivatives are included in the expansion about the depth point then
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the number of equations in the system {(14) is reduced accordingly. For

) example, for a linear expansion, only fx and fy are used in Equation 13,

50 only two neighboring depth points are used and the system (14) consists of
two equations only. The code provides for the use of two (fx,fy), three
(fx,fy,fxy), four (fx'fy'fxx'
28. This interpolation {s implemented by first sweeping all the depth

fyy), and all five derivatives.

points, at each of which the appropriate numbering of neighboring points is
located and the required derivatives are evaluated by the solution of the
system (14), Then the grid points are swept, determining the nearest depth

point at each and determining the depth from Equation 13.

Interpolation Within Triangles or Quadrilaterals of Depth Points

29. If the depth at a grid point (x,y) is written as the linear

function

f(x,y) = a + bx + ¢y (15)

then the coefficients a , b, and ¢ can be determined by evaiuating Equa-

tion 15 at three depth points surrounding the grid point in question (cf.

Figure 2). Thus we have the system

- fl =a + bxl + C)’l i=1,2,3 (16)

of three equations for the three coefficients.
30. Similarly, with the depth given by the product of linear functions

in each coordinate we have

f(x,y) = (a + bx) (c + dy)

= ac + bex + ady + bdxy

Redefining the coefficients, this can be written as

f(x,y) = a * bx *+ cy + dxy (T

and now evaluation at four surrounding points gives the system

iy
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f; =a+ bxy + cvy + dxiyi i=1,2,3,4 (18)

31. Implementation proceeds by sweeping the grid points, at each of
w-ich the three or four nearest surrounding depth points are located and the
coefficients are determined by solution of the system (16) or (18). Then the
depth at the grid point is evaluated from Equation 15 or Equation 17.

Inverse—-Power Interpolation Among Depth Points

32. Here the depth at a grid point (x,y) is written in terms of inverse

powers of the distance to each point of a surrounding group of nearest depth

points (ef. Figure 3) as follows:

3 f(xi.yi)
=1 d}
f(x,y) = 3 1 (19)
d
i

where di ‘/(x - xi)2 + (y ~- yi)2 is the distance from the grid point in
question to the depth point (xi,yi) and m is a specified power, one or
greater. The code provides for two, three, four, five, or all depth points to
be used in Equation 19. The exponent m 1is an input quantity, higher values

of this exponent giving sharper variations in depth.

Location of Neighboring Depth Points

33. The accuracy of the interpolation is enhanced if the group of depth
points used generally surrounds the point in question. This requires a some-
what different selection procedure for each succeeding point chosen as de-
scribed below. Each selected point is, of course, excluded from the selection
procedure for the succeeding points.

First point
34, The first depth point selected is simply the nearest one to the

point in question: (The notation in all the following figures is that the

vector Cij points from point 1 to point j , with the point about which
i)
~ the group is being formed designated as point 0 .)
- 15
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Second point
35. The second depth point selected is required to form an obtuse angle
with the first point at the point in question. The closest point satisfying

this requirement is the one chosen:

This is accomplished by selecting point 2 as the closest point having

Lot * Tpp <O (20)

Tnird point
36. The third depth point chosen is the nearest one lying in the shaded

zone in tnhe figure below, i.e., between the backward extensions of the vectors

to the first two points.

With the unit vectors to the selected points designated as §01 , etc., the




unit vector

1y

along the bisector of the angle between the first two points
is given by

Then the third point will lie in the shaded region if

a5 * (-a) 2 (-ay,) » (-a)

03 2

which, upon substitution for a , becomes

T "8y * 2 "3 " 23 33 " 3 £0
But
(a + a + a )2=3+2(a e a + a e a + a v a..)
~01 ~02 =03 ~01 =02 ~02 ~03 =03 =01
so that the requirement becomes
1 2.3
T [2@01 302 * 203 2]5 0
or finally simply that A
o) .
|§01 + §02 + §O3I <1 (21) e

37. The nearest point satisfying this criterion is, of course, chosen.
Selection of the third point in this manner assures that *he p»hint about which

the group is formed will lie inside a triangle formed by the three depth

points chosen.

Fourth point
38. The fourth point selected is required to lie outside tne =ones r,:,
et
formed by extending the sides of the triangle of points already chosen: ;a::
ol
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In the diagram here, a 1is the unit vector on the bisector of the angle be-

tween the vector from point 1 to points 2 and 3. Thus

a + 3

~12 ~
a= 33 313

=12 213

The fourth point will lie in the region between the extensions of the vectors
a5 and §13 , a4s shown, if

4y

3N
[
110
.
[}

Following a development analogous Lo that given abave in connection with the

third point, this becomes

la,, - a,, -

2y T 2 T gl o (22)

This, however, does not ensure that the fourth point is outside the triangle

formed by the first three points. Therefore we require in addition that

r >t
I_“JI -
Now
r +a bt -r + a
~01 <1y “oo T 2239
T
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so that

Crossing §23 into both sides to eliminate q , we have

IxX| ]

Point 4 then will lie outside the triangle if

~12

(23)

~

IXIxR
—~
W]

N
w
X
o1}

leayl >

The inequalities (22} and (23) apply for a point outside the triangle and be-
tween the extensions of the sides with a vertex at point 1. Generalizing to
the other two vertices, the fourth point is selected as the nearest point
satisfying conditions (24) and (25) below for any of the three values of i

i.e., for any vertex of the triangle:

’

20~ 2y~ 2yl €1 (24)
K - (émn r:im)
el > (25)
i S (émn * éiu)
i=1,2,3 (i,m,n) cyclic

Selection of the fourth point in this manner guarantees that the four points
form a convex quadrilateral about the point in question.
Fifth point

39. Here agaln the nearest point is chosen, without regard to other con-
siderations. This simple choice of the fifth point does not necessarily pro-
duce a convex polygon, but the extra complications involved in doing so was not

considered justified in view of the lack of real incentive to use five points.
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Additional groups

L0, In some cases with fewer depth points it is possible that the
interpolation is inaccurate because the particular group of points selected
gives a false impression of very large gradients. Therefore provision is made
for selecting more than one group of points and basing the interpolation on
the group giving the smallest gradients. The code also automatically replaces
points in any group leading to a zero determinant in the solution of the

linear system for the derivativ:s or coefficients.
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PART IV: GENERATION PROCEDURE

Iterative Solution

41, The numerical solution of Equation 10 or Equation 11 is accom-
plished in finite difference form by replacing all derivatives with second-
order central difference expressions. The resulting difference equations are
nonlinear since the coefficients of the second derivatives involve the first
derivatives. This system of difference equations is solved by accelerated
point Gauss-Seidel iteration. In both the first and second derivatives, all
off-center values above, or to the right of, the point of evaluation are
evaluated at the previous iteration, while those below, or to the left, are
evaluated at the present iteration. With the central values in the second
derivatives factored together, we then have a 2x2 system for x and y at
the point in the case of Equation 10 and an uncoupled system with Equation 11,

The field is swept repetitively until convergence to some prescribed tolerance.

Weight Function

42, The components of the gradient of the weight function are given by

1 (w - W )
X J Eyn nyﬁ

x
)

(26)

W o= — (W x_ = wWw.X)
n

y J ng g

and the values of the weight function at each point are continually updated
during the iteration according to Equation 1. Since the weight function is

not time-dependent on the physical field in the present application we have

@),

X,y
so that Equation 1 reduces to
(3w R
at X y
£,N
21
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Then using first-order forward difference expressions for the time derivatives

and canceling the At we have
= +
AW wax wyAy (27)

which could also have been obtained, of course, by direct application of the
chain rule, Equation 27 then serves to determine the change in w at each
point in terms of the change in x and y at each iteration.

43, The code first generates a grid from the original WESCOR system
without adaption. Depth values are then interpolated onto this initial grid
from the set of depth points. The depth points may be input in any order and
without any pattern. The code automatically adds the points on the outer
boundary to the input set of depth points, with a depth of zero for the for-
mer, and eliminates duplicated points. It is this augmented set that is used
in the interpolation. These zero depths on the outer boundary can be over-
ridden by including the outer points that are to have nonzero depth in the
input set of depth points., Several forms of interpolation are provided as
discussed in PART [[I. After the interpolation the depths can be smoothed on
the initial grid points.

44, The smoothed interpolated values of the depth on the initial grid
then are used as the weight function in the generation system, the values of
the depth being continually updated at each point from Equation 13 as the grid

moves wWwithout further interpolation.
Input

45, The depth-adaptive code, called WESCORA, has the same structure as
the earlier WESCOR code capable of generating 2-D grids on arbitrary regions
with interior obstacles. The input is the same as that described for the
WESCOR code by Thompson (1983), with a few additions described below. Com-
plete input instructions for WESCORA are given in Appendix A.

L6, The total number of depth points to be read in for grid adaption is
input as NDEP, and a flag NDOP controls the printing of the depth points. (If
NDEP=0 the code runs the nonadaptive system only.) The flag NDEPF causes the
depth points to be read from file 12 instead of from the input. The type of

interpolation is specified by NINP as follows:
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NINP = O
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inverse—-power interpolation using all points

-2 inverse-power interpolation using 2 points
-3 inverse-power interpolation using 3 points
] inverse-power interpolation using 4 points
-5 : inverse-power interpolation using 5 points
2 : Taylor series interpolation using 2 points

3 : Taylor series interpolation using 3 points

b : Taylor series interpolation using y points

5 : Taylor series interpolation using 5 points

13 : Bilinear interpolation using 3 points
14 : Bilinear interpolation using ] points

If adjusted depths are used for the adaption, then an additional depth file
containing actual depths is input to provide real depths at the center of each
computational cell, The flag LDEPF causes the second set of depth points to
be read from file 16 instead of from the input, with LDEP points contained in
the file. The interpolation of the actual depth field onto the final adaptive
grid can be a different type from that employed in the grid generation. The
types available are the same as those described above., The use of an adjusted
depth field is discussed in more detail in PART V.

47. The parameter NCOM specifies the number of groups of points to be
considered in the interpolation (the default is one group). The parameter
NTES suppresses the requirement that the points selected form a convex polygon
about the point in question, and the parameter NSMO suppresses the smoothing
of the depths after interpolation onto the grid points.,

48, The three parameters controlling the relative emphasis on concen-
tration, smoothness, and orthogonality are input as WFACI, SFAC, and OFACI,
respectively, the nominal ranges being 0-1. (A negative value of WFACI will
cause the control function adaption, rather than the variational adaption, to
be used, with the magnitude in the nominal range. In this case the other two
parameters are irrelevant.)

49, The depth points used in the adaption are read in either from the
input or from file 12, immediately after the boundary points are read, with
the Cartesian coordinates of the point in columns 0-10 and 11-20, and the
depths in columns 21-30. The depth points may be in any order, and duplica-

tions will be automatically eliminated by the code. 1If a second set of depth

23




points is input, they are read in either from the input or from file 16. The

format is the same as noted above.

50. An additional feature has also been added allowing the use of
Neumann boundary conditions to produce orthogonality on straight boundaries if
desired. This feature is activated by NEUBOD for slab sides and by NEUOUT for

the outer boundary.

v ‘n.“"" " 't i L ... ..- .,
L S
.

/’

i

..i"\'v
}’.
Q

S

“
e
“e

’-{..'-,'-"'-"

Y]




e

I's s 8 a0 0 ®

PART V: CHESAPEAKE BAY APPLICATION

51. For demonstration purposes, the adaptive grid generation code
WESCORA has been applied to Chesapeake Bay (Figure 4).

Chesapeake Bay

52. Chesapeake Bay, located on the east coast of the United States, is
one of the largest estuaries in the world. The main bay extends approximately
190 miles north from the ocean entrance in the Commonwealth of Virginia, be-
tween Cape Henry and Cape Charles, to the Susquehanna River in the State of
Maryland. The average depth of the bay is about 28 ft, although a natural
channel with depths greater than 50 ft traverses the bay for more than 60 per-
cent of its length. The maximum depth of 175 ft is located in the upper bay
near Bloody Point, Kent Island, Maryland.

53. Like many coastal plain estuaries, the bay is irregular in shape
varying in width from 4 miles, between Annapolis and Kent Island, to 30 miles,
in the middle bay off the Potomac River. More than 64,000 square miles of
drainage area empty into the bay through more than 50 different tributary
systems. Five major western shore rivers (Susquehanna, Potomac, James, York,

and Rappahannock) provide approximately 90 percent of the annual freshwater
discharge.

Selection of Boundary Points

54, A basic input to the grid generation code is the specification of
the (x,y) coordinates of the boundary points (Figure 5). The degree of reso-
lution of boundary features will, of course, depend upon the number of ¢
and n 1lines selected in the transformed rectangular plane as well as the
location of the boundary points. The actual boundary points selected for use
in WESCORA are listed in Appendix B, Figure 5 is presented only for demon-
stration purposes. The rectangular (g£,n) plane corresponding to the actual

boundary points listed in Appendix B is shown in Figure 6,
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Grid Generation Using Actual Depths

55. Initially, depth points were randomly selected, with approximately
800 points specified to cover the navigation channel as well as the nonchannel
areas. Depths ranging from O on the boundary to a maximum of 156 ft were in-
put. All of the interpolation schemes previously discussed were tried with
little success in forcing coordinate lines to closely follow the navigation
channel. The grid presented in Figure 7, which resulted from a 3-point in-
verse power interpolation with an exponent of 4 (Equation 19), does show some
adaption to the channel. However, the depth field interpolated on the initial
grid presented in Figure 8 evidently did not contain sufficient gradients to
force adequate adaption to the natural channel., The concentration evident in
this initial grid is caused by the boundary point distribution through the
control functions in the original WESCOR formulation as mentioned in para-
graph 6., Another example {5 the grid shown in Figure 9, which was computed
using 2-point inverse power interpolation with the exponent set to be 10, The

grid seems to be trying to adapt to two channels. The reason is not apparent.

Grid Generation Using Hypothetical Depths

56. The next effort involved using an adjusted depth field in which the
natural channel was assumed to be 100 ft deep, with zero depths specified out
of the channel. In addition, as illustrated in Figure 10, the depths were
read in as points of cross sections that were constructed approximately per-
pendicular to the center line of the channel. A total of approximately
100 depth points, with a value of either 0 or 100, were input.

57. With the hypothetical depth field, attraction of grid points to the
navigation channel was achieved for most of the interpolation schemes. The
b-point bilinear with smoothing and the 3-point bilinear with no smoothing
schemes resulted In unstable computations. However, the 3-point bilinear
scheme with smoothing was stable and the resulting coordinate system, pre-
sented in Figure 11, contains good clustering of grid points in the channel.
Figures 12 and 13 show grids generated using the 2-point inverse power inter-
polation with exponents of 4 and 10, respectively. Little impact as a result
of the change in the exponent is observed. The grid presented in Figure 14

resulted from using U-point inverse power interpolation with an exponent of U4,
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while that in Figure 15 used a Taylor series interpolation with 2 points. The
latter is perhaps the most physically appealing of all the grids generated.

Influence of Weighting Factors

58. All of the grids presented up to now were generated with a weight-
ing factor of 1.0 for each of the three contributing integrals in Equation 10.
To demonstrate the relative effect of each factor, Figures 16 and 17 are pre-
sented. In Figure 16, the concentration weight factor has been set to 0.0,
with the smoothness and orthogonality factors retaining a value of 1.0. As
expected, no attraction to the navigation channel occurs and a relatively
smooth grid is generated. This occurs even though the initial grid, shown in
Figure 8, had concentration based upon boundary point distribution. The
variational formulation with only smoothness and orthogonality smooth out the
initial concentration. In Figure 17, both the concentration factor and the
orthogonality factor are set to 0.0, while keeping the smoothness factor at
1.0. This is the grid that would be computed by the WESCOR code with zero
values for the control functions in Equation 11. An interesting observation
is that the grid generated with no enhancement of orthogonality, i.e., Fig-
ure 17, would probably be more appropriate for flow computations than the one
in which the orthogonality condition is enforced, i.e., Figure 16, because

orthogonality is achieved at the expense of smoothness.

Practical Aspects

59. Obviously, not only the numerical grid, in which grid lines follow
navigation channels, but also the water depths associated with each computa-
tional cell are desired as output from the grid generator. The numerical
hydrodynamic-transport model to be subsequently employed would then use this
output in the computation of flow and constituent fields. However, use of the
actual depth field, input as a random distribution, did not result in suffi-
cient depth gradients to force grid lines to adequately follow the natural
navigation channel in Chesapeake Bay. As a result, a hypothetical depth field
was created, with large depths in the channel and zero values elsewhere, In
this case, the final depth associated with each computational cell is meaning-

less. It should be realized that as far as grid generation is concerned the
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use of either real or adjusted depths is immaterial, although real depths are

required on the final grid upon which flow computations are to be made. The

solution is to use the adjusted depth field to compute the grid and then to
interpolate from the actual depth field for the water depth to be associated
with each cell of the final grid.

60. Based upon the Chesapeake Bay grid generation, it appears that the
Taylor series interpolation with 2 points yields perhaps the "best-looking"
adaptive grid. Evidently the gradients in the hypothetical field are better
maintained after interpolation onto the initial grid, although the actual
values are in error. Table 1 presents the depth limits resulting from dif-
ferent interpolation schemes, along witn the limits of the interpolated depth
field after smoothing. Based upon the results shown in Table 1, it would
appear that interpolation of the actual depth field onto the final adaptive
grid should perhaps be based upon the inverse power interpolation with no

smoothing.




[ R A A A SNERACA R 4% s et

PART VI: SUMMARY AND CONCLUSIONS

Summarz

61. As a result of the need for generating boundary-fitted numerical

grids for use with finite difference models in coastal and estuarine areas, a
numerical grid generation code called WESCORA has been developed as an exten-
sion of an earlier code, called WESCOR. Grid generation is based upon adap-
tive grid techniques that have been developed for dynamic grid adaption. How-
ever, for the purpose of computing free-surface hydrodynamics and transport in
coastal and estuarine areas these techniques have been employed here only for
the generation of the initial grid and no time-dependence is considered.

62. Two adaptive mechanisms are contained in WESCORA; namely, adaption
based upon a variational formulation and adaption based upon a control func-
tion formulation. In both cases, adaption to water depths is used to force
grid lines to follow navigation channels. Preliminary testing of the two
approaches has shown that the variational formulation is apparently the more
reliable,.

63. In the variational approach, a functional that consists of the sum
of three integrals involving the physical coordinates is minimized over the
grid. The first of the integrals controls grid point concentration while the
other two control grid smoothness and skewness of the grid lines. By weighing
the importance of the three integrals, either grid point concentration,

smoothness, or orthogonality can be emphasized.

Conclusions

64. Preliminary testing of WESCORA on Chesapeake Bay has resulted in
the general conclusion that numerical grids can be generated such that grid
points cluster in navigation channels. However, unless there are large dif-
ferences between the channel and nonchannel depths, a fictional depth field
may be required to achieve adequate adaption. In this case, the actual depth
field should be interpoliated onto the final adaptive grid to provide rela-
tively accurate water depths to be associated with each computational ~eli >t
the grid. Particular conclusions concerning usage of the code are offered

below.
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The inverse power interpolation is bounded by the extreme
values of the depth values and is the smoothest interpola-
tion. It may give, however, a depth distribution that is
smoother than intended. A value of 2 to 4 for the exponent
involved here is probably appropriate.

There i3 probably no real reliable .dvantage to using large
numbers of points in the interpolation, three points being most
reasonable.

The features provided requiring a convex polygon of depth
points in tre interpolation and smoothing after the interpola-
tion should be used.

Multiple groups of interpolation points should be used with the
Taylor series and bilinear interpolations, four groups being
reasonable.

For grid generation, the bilinear interpolation with three
points or the Tavlor series interpolation with two points,
should be good chioices in most casrs. The inverse power in-
terpnlation with no smoothing should provide relatively
accurate depths on the final zrid.

Neumann boundary conditions (orthogonality at the boundary)
should be used on boundary segments on which the depth
varies. This feature requires that the boundary segment in
question be straight.

The variational adaptive mechanism is the more reiiable. The
values of the smoothing and orthogonality parameters should be
kept equal and not more than an order of magnitude smaller than
the concentration parameter in most cases.

If the randomly distributed depth field does not yield depth
gradients sufficient to cause good adaption to navigation
channels, a hypothetical field such as the one used in the
Chesapeake Bay example should be input. In general, cross
sections should be aligned perpendicular to the channel.
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Figure 2. 3ilinear interpolation within triangle of depth points
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Figure 7. Depth=adaptive grid using inverse power interpolation
Wwith three points and an exponent of 4

Figure 8. Initial grid

Figure 9. Depth-adaptive grid using inverse power interpolation
with two points and an exponent of 10
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Figure 10. Demonstration of depths input from cross sections

Figure 11, Depth-adaptive grid using bilinear interpolation
Wwith three points

3 Figure 12, Depth>adaptive grid using inverse power interpolation
with two points and an exponent of &
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Figure 13, Depth~adaptive grid using inverse power interpolation
with two points and an exponent of 10

Figure 14, Depth~adaptive grid using inverse power interpolation
with four points and an exponent of 2

Figure 15, Depth~adaptive grid using Taylor series interpolation
with two points
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Figure 16. Depth-adaptive grid with concentration factor = 0.0
and orthogonality and smoothness factors = 1.0

Figure 17. Depth-adaptive grid with concentration and
orthogonality factors = 0.0 and smoothness factor = 1.0
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Table 1
Interpolated Depth Limits

Interpolation Scheme Actual Limits Interpolated Limits Smoothed Limits
Bilinear with 3 points 0-156 0-120 0- 86
Bilinear with 3 points 0-100 0-100 0- 98
Inverse power with

4 points, exponent = 4 0-156 0-137 0-100
Inverse power with

4 points, exponent = 2 0-100 0-100 0- 95
Inverse power with

3 points, exponent = 4 0-156 0-137 0-100
Inverse power with

3 points, exponent = 4 0-100 0-100 0-100
Taylor series with

2 points 0-156 0-139 1- 96
Taylor series with

2 points 0-100 0-4u9 1-296
Taylor series with

3 points 0-156 0-204 1-126

Tt e e e el e L W T T T T L e el . L . B <
O R TP Sl T P P P R L P R L ~ -
LN PPN PR WY S NI Y Ty T Tl S PN R LS

A A SR IR .\"i
kDb "B n et " "8l e

& _..'...'_ e .".-'_. = ‘A.'-:". = & t o ‘_
SIS IS IS AT TRl MU VS U0 LIS % SRR, 38 3




RS, T T Y NN TLY i - - . - v - - y - 4 & | o’

APPENDIX A: INPUT INSTRUCTIONS
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1330083322433 320303 ¢00 2000 R0 0002030220202 0003808 030844
¢

CESSSRERTRITXEITLRITLLIIBEE W E S C O R A SXEESIXSXABETSLRLETRISSERILLSRBAX
c

CEZEXESXXRZXZREXBLEEXNXTZSLAXZERSE AU SAAXARXRZAS SRS ARRRISSXBILS

c
{ C 2-D BOUNDARY-FITTED COORDINATE SYSTEM CODE ( DEPTH-ADAPTIVE )
3 Cc
: g MISSISSIPPI STATE UNIVERSITY . 1982 REVISED 1985
C U.S. ARMY ENGINEER UATERWAYS EXPERIMENT STATION
C  VICKSBURG, MISSISSIPPI
¢
(2 ¢ 2t 2 20 0202320020033 238302 833820303333 3333333333¢2383¢¢803322¢203383 3383823,
¢
2 C SS3XXXTXIBLBT SLIT-SLAD CONFIGURATION S233%
c x
3 C 3388 ATTRACTION TO COORDINATE LINES/POINTS AND TO SPACE LINES/POINTS.
C 2338 CONTROL FUNCTIONS ALSO INTERPOLATED FROM BOUNDARY POINT DISTRIBUTION
c z
C 12333 ADAPTIVE ON DEPTH DISTRIBUTION.
c s
C 338 CAN BE ORTHOGONAL ON STRAIGHT BOUNDARY SEGMENTS.
c z
C 2I3ESTTITTETXSSISLTISELSRILLLLRSRSLILLSATXEILITTLLLRTSTLIITLTTLLLLLS
C SXIITIIXLIL INPUT INSTRUCTIONS 1
c =
v C 532 CARDS(2) i LABEL - FORMAT(10A8)
- (I
- c 3 LABEL - TUO 80 CHARACTER CARDS. (BLANK CARDS IF NO LABEL)
% c z
¢ C 528 CARD : IRAX,JMAX,NBDY, ITER,ISLIT, IBNDRY,IDISK, IVIR, IVINTL,
3 c = [UFIN,MREN,NEUINT - FORMAT(1215)
c 3
c 3 INAX - NUMBER OF XI POINTS.
- c 3
. c 3 JMAX -~ NUMBER OF ETA POINTS,
N cC 3
A c x NBDY ~ TOTAL MUMBER OF SLAB SIDES AND SLITS IN THE FIELD.
. c s
\ c x ITER - PMAXIMUM NUMBER OF ITERATIONS ALLOWED.
c 32
2 cC % ISLIT - <1 SLAB SIDES OR SLITS READ FROM CARDS.
- c 3 X,Y =~ FORMAT(2F10.0) , ONE POINT PER CARD.
- (I s2 SLAB SIDES OR SLITS READ FROM FILE 19.
. c s X,Y =~ FORMAT(2F10.0) , ONE POINT PER CARD.
. c s
< cC s (NOTE: HORIZONTAL SLITS ARE READ CLOCKJISE FROM RIGHT END.)
, c 3 ( VERTICAL SLITS ARE COUNTER-CLOCKUISE FROM TCP. )
: g b3 « SLAB SIDES MAY BE READ IN EITHER DIRECTION. )
b3
- [ IBNDRY - =@ OUTER BOUNDARY CALCULATED INTERNALLY AS CIRCLE.
- cC s *1 OUTER BOUNDARY READ FROM CARDS.
v c s X,¥ - FORMAT(2F10.@) , ONE POINT PER CARD.
% c 3 =2 OUTER BOUNDARY READ FROM FILE 1@,
X c s X,Y - FORMAT(2F10.0) , ONE POINT PER CARD.
c 3 -1 OUTER BOUNDARY READ IN SEGMENTS AaS SLAB SIDES.
P c x
a c 3 (NOTE: FOR IBNDRY » 1 OR 2 , OUTER BOUNDARY IS READ CLCCKUISE
. c 3 ( FROM POINT (INFXI,INFETA).
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%% CARD

L X X XXX Z E AR X N X 2 KL R E N NZ XX X ZXEX XXX X AN XXX NN XN N ¥ N ¥ ¥

*OUTER BOUNDARY® PMEANS ENTIRE BOUNDARY OF TRANSFORMED
REGION IF NREN=O®. IF NREN IS NOY 2€ERO, THEN OQUTER
DOUNDARY 1S THE TOP OF THE TRANSFORMED REGION AND
INNER BOUNDARY IS THE BDOTTOAM.

IDISK -~ +0 DON’T READ OR URITE SYSTEM FROM OR ON FILE.
*{ URITE SYSTEM Oh FILES 10 L 11. DON'T READ SYSTEM FR
=2 URITE SYSTEM ON FILES 10 L 11 . READ SYSTEM FROM F1I
=3 READ SYSTER FROM FILE 1@ FOR RESTART. DON’'T URITE S

(MOTE: FILE 1@ 1S RESTART FILE FOR CONTNUATION OF ITERATION.)
( FILE 11 IS STORAGE FILE FOR FINAL SYSTENM. )

—~ o -

IVIR - =9 DON’T PRINT EACH ITERATION ERROR.
«f PRINT EACH ITERATION ERROR.
IVINTL - «@ DOM’T PRINT INITIAL GUESS.

*1 PRINT INITIAL GUESS.

IUFIN - ZERO SUPPRESSES PRINT OF FINAL VALUES.

NREN - NON-ZERQ USES RE-ENTRANT BOUNDARY ON LEFT & RIGHT SIDE
OF TRANSFORMED REGION, WITH OUTER BOUNDARY ON TOP
AND IMNNER BOUNDARY ON BOTTON.

INNER BOUNDARY 1S READ AS FOLLOUS BEFORE READING OUTER
=1 INNER DOUNDARY READ FROM CARDS.

X,Y -  FORPAT(2F10.Q) , ONE POINT PER CARD.
=2 INMNER BOUNDARY READ FROR FILE 10.
X,¥ - FORMAT(2F1€0.0) , ONE POINT PER CARD.

(MOTE: SLITS AND/OR SLABS MAY ALSO BE PRESENT.)

NEUINT - 1 SUPPRESSES NEUMANN BOUNDARY CONDITIONS FOR
INITIAL GRID.

23 CARDS(NBDY) LB1,LB2,LB3,LTYPE,NEUBOD - FORMAT(SIS)

LB1,LB2 - FIRST AND LAST INDICES OF SLAB SIDE OR SLIT ENDS.
(LB2 MAY BE LESS THAN LB1 FOR SLAB SIDE. INPUT IS FRO

L33 - INDEX OF LINE ON UMICH SLAB SIDE OR SLIT IS LOCATED.
LTYPE - SLAB SIDE OR SLIT TYPE (1 FOR HORIZONTAL, 2 FOR VERTICA
(NEGATIVE INDICATES SLAB SIDE, RATHER THAN SLIT.)

(SUBTRACT 10 FOR OUTER BOUNDARY SEGMENT. )
(1.€., -131 IS HORIZONTAL OUTER BOUNDARY SEGMENT,)
( -12 IS VERTICAL OUTER BOUNDARY SEGMENT. )

NEUBOD - 1 MEANS NEUMANN BOUNDARY CONDITION.
@ MEANS DIRICHLET CONDITION.

NEUOUT(4) - FORMAT(4IS)

NEUOUT - 1 MEANS NEUMANN BOUNDARY CONDITIONS ON OUTER BOUNDARY.
(OUTER BOUNDARY MADE OF SLAB SIDES 1S CONTROLLED
BY NEUBOD INSTEAD OF NEUOUT.) .
® MEANS DIRICHLET CONDITIONS.

. .

o

P N A
5'1 2e'e’n
rJ o
s’ N

l.'

h

N
o,

.

L .




Er Vo AW S MRS TR,

23 CARD

000000 OHOOOOOIOOOOOOOOODDODOOANOODOOOD
(2 A 2 X A N X R X R XA XXX XX 2 X2 R XXX X X2 XN S AN RS NN XY X K X B ¥ J

(1) * LEFTY
(2) ¢+ RIGHT
(3) ¢ BOTTOM
(4) ¢t TOP

28 CARD : NDEP,NDOUT,NDOP,NDEPF ,NINP,NCOM, NTES,NSMO - FORMAT(BIS)

NDEP - NURBER OF DEPTH POINTS.
( ZERO FOR NON-ADAPTIVE SYSTEM )

NDOUT - NON-ZERO ADDS OUTER BOUNDARY POINTS TO DEPTH POINT
LIST, WITH ZERO DEPTH.
¢ THIS SHOULD BE USED UNLESS THE INPUT DEPTH POINTS
EXTEND TO OR BEYOND THE OUTER BOUNDARY. INPUT DEPTH
POINTS THAT ARE COINCIDENT UWITH OUTER BOUNDARY POINTS
UILLSgETAXN THE INPUT DEPTH EVEN UHEN THIS FEARTURE
IS USED.

NDOP - | FRINTS DEPTH POINTS.
NDEPF - NON-ZERO READS DEPTH POINTS FROM FILE t2.

NINP - INTERPOLATION TYPE ¢t @ > MARMOMNIC - ALL
13 > BILINEAR - 3 POINTS
14 > DILINEAR - 4 POINTS
e > 2-POINT TAYLOR SERIES
3 > 3-POINT TAYLOR SERIES
4 > 4-POINT TAYLOR SERIES
S > S-POINT TAYLOR SERIES
-2 ) HARMONIC - 2 POINTS
-3 > HARMONIC - 3 POINTS
-4 > HARMONIC - 4 POINTS
-5 > HARMONIC - S POINTS

l'ESTME1352131’21'3)

NCOM - NUMBER OF INTERPOLATION POINT SETS FOR TAYLOR. ¢ 4 )
POUER FOR HARMONIC. ( 2 )

NTES - NON-ZERO REQUIRES SUCCEEDING POINTS TO SURROUND
INTERPOLATION POINT. ( USE THIS )

NSMO - 1 SUPPRESSES DEPTH SMOOTHING. ( DOM’T SUPPRESS )

R(1),R(2),R(3),YINFIN,AINFIN,XOINF,YOINF, INFXI, INFETA
- FORMAT(7F10.0,215)

R(1) - SOR ACCELERATION PARAMETER FOR INITIAL GRID.
(ZERO VALUE CAUSES VARIABLE ACCELERATION PﬁRﬁﬂETER)
(FIELD TO BE CALCULATED INTERNALLY.
(NEGATIVE JVALUE GIUES ALGEBRAIC SYSTEM)

R(2) - ALLOWPBLE X ITERATION ERROR.
R(3) - ALLOWABLE v ITERATION ERROR.
YINFIN - RADIUS OF CIRCLLAR OUTER BOUNDARY.
AINFIN - ANGLE OF FIRST POINT ON CIRCULAR OUTER BOUNDARY (DEGRE
AS
e b N Ny i s e Coleale e Ll nll
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(COUNTER-CLOCK FROM POSITIVE X-AXIS.)
XOINF,YOINF - CENTER OF CIRCULAR OUTER BOUNDARY.
INFXI,INFETA - INDICES OF FIRST POINT ON CIRCLLAR OUTER BOUNDAR
(MOTE t LASY 7 OF THESE PARARETERS ARE IRRELEVANT IF OUTER B

8% CARD t ACCL,WUFACI,SFAC,OFACI - FORMAT(4F10.0)
( ORIT IF NDEP-® )

ACCL - SOR ACCELERATION PARARETER FOR ADAPTIVUE CRID. ( 1.8
UFACI - CONCENTRATION FACTOR. ( 0.0-1.0 )

( POSITIVE VALUE FOR VARIATIONAL ADAPTION )

( NMEGATIVE VALUE FOR CONTROL FUNCTION ADAPTIOM )

( SFAC & OFACI ARE IRRELEVANT IN UFACI IS NEGATIVE)
SFAC - SMOOTHNESS FACTOR. ( ©.0-1.9 )

OFACI - ORTHOGOMALITY FACTOR. ( @.0-1.0 )

4 9 85 506 0006080500008 008s00000 99 680 c0 000 e e es 00 s t e e s e s s

XX Z X X 2 X R X X 2 KX 20X XX XK X X J

23 IF BODIES AND/OR OUTER BOUNDARY ARE READ FROM CARDS, SUCH CARDS

23 FOLLOW MEXT UNMLESS A RESTART IS USED.

13

32 SLITS AND/OR SLAB SIDES ARE READ FIRST, THEN OUTER BOUNDARY IS READ.
B (THESE RULES APPLY FOR READING FROM FILE 1@ AS WELL AS FROM CARDS.)
33
‘0.......-.-.0.l..'....'.O.bl’...l.'..l'..'....l..i‘.'..&'l..‘l..‘.l
3% IF DEPTH POINTS ARE READ FROM CARDS, SUCH CARDS FOLLOU NEXT

32X IN THE FOLLOWING FORMAT. IF DEP=@ NO DEPTH POINTS ARE READ.

3% OMIT IF A RESTART IS USED, UNLESS 1T IS FROM A CONVERGED INITIAL
23X GRID GENERATED WITHOUT READING DEPTH POINTS.

3

'.‘..0..0...O."..'l.ll.l.‘..o.l.'.lI.Il‘..l'.l.ll'.ll.....l....

|

333 CARDS(NDEP) : XDEP,YDEP,DEP - FORMAT(310.0)

XDEP,VYDEP - X,Y COORDINATES CF DEPTH POINT.
DEP - DEPTM.

LR R B I I I R R R A I R I N I S I R S A I I B N A S A I ) L R S A A AN N )

L X X 2 X K N R/
.

X3 IF NO COORDINATE ATTRACTION IS TO BE USED, FOLLOW THESE CARDS

X3 UITH FIVE BLANK CARDS. IF ATTRACTION IS TO BE USED, USE THE FOLLOWING
3% INPUT RATHER THAN THE BLANK CARDS:

 § 3

$3 INPUT FOR COORDIMNATE SYSTEM CONTROL : USE FOUR SETS, ONE FOR

8% XI~-LINE ATTRACTION 70O COORDIMNATE LINES/POINTS, ONE FOR ETA-LINE ATTRAC
22 TO COORDINATE LIMES/PQINTS, ONE FOR XI-LINE ATTRACTION TO SPACE LINES/
X% AND ONE FOR ETA-LINE ATTRACTION TO SPACE LINES/POINTS,

33 ANY SET NOT UANTED 1S REPLACED BY ONE BLANK CARL.

33 :

3895388838 8828388838338888380888 33808228088 8888808800888382820888888
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::0.0.038..88'0300.008.0.888.0838.3088808080880008803.808083808.00
:: THE FOLLOWING, MARKED WITH 8, IS FOR ATTRACTION TO COORDINATE LIMNES/PO

283X CARD : ATYP,ITYP,NLN,NPT,DEC,AMPFAC - FORNAT(AS,12,215,2F10.0) B

822 THE FOLLOWING CARDS ARE FOR ATTRACTION TO LINES AND/OR POINTS
2833 DEFINED BY X,Y COORDIMATES. IF NLN IS NOT ZERO, THEN NLNM
8833 OF THE CARDS GIVING NP MUST APPEAR. EARCM OF THESE CARDS 1S
2838 FOLLOVED BY NP OF THE CARDS GIVING XPT, ETC. IF NPT IS NOT
$82% ZERO, THEM NPT OF THE CARDS GIVING XPT, ETC. MUST FOLLOV
3833 THE LAST GROUP OF THESE CARDS.

S8XX ANY SET NOT UANTED 1S REPLACED By ONE BLANK CARD.

¢

¢

c

c

c =8 St

c s ATYP - TYPE OF ATTRARCTION. (X] FOR XI-LINE ATTRACTION, S

g t: ETA FOR ETA-LINE ATTRACTION.) LEFT JUSTIFIED. :3;5
g e

C =8 ITYP - 2ERO GIVES ATTRACTION ON BOTH SIDES. BN

c 1 NON-2ERO GIVES ATTRACTION ON UPPER SIDE AND RS

g x: REPULSION ON LOWER SIDE. eava——
b4 b

C 18 NLN - NUMBER OF ATTRACTION LINES. R

c 18 Sl

c s NPT - NUMBER OF ATTRACTION POINTS. RN

c =3

cC =8 DEC - NON-2ERO DEC USES DEC FOR DECAY FACTOR. S

C 18 .'.:

(A ¢ AMPFAC - NON-2ERO AMPFAC RULTIPLIES ALL AMPLITUDES BY AMPFAC. e

C 18 -

C 32858 CARDS(NLN) : JLN,ALN,DLN - FORMAT(S5X,15,2F10.0) N

c t: (ORIT IF NLN 1S ZERO) AR

cC R

cC 22 JLM - ATTRACTION LINE INDEX. AR,

c 38 e

c x: ALN - AMPLITUDE (MNEGATIVE REPELS) FOR LINE ATTRACTION. A0

cC z .

c :: DLN - DECAY FACTOR FOR LINE ATTRACTION.

c 12

C 2333 CARDS(NPT) 3 IPT,JPT.APT,DPT - FORMAT(215,2F10.0)

c t: (OMIT IF NPT IS ZERO) S

¢ 3 R

c :t IPT,JPT - ATTRACTION POINT INDICES. T

¢ 18 .

g x: APT - APPLITUDE (MNEGATIVE REPELS) FOR POINT ATTRACTION. =
4

c :c DPT - DECAY FACTOR FOR POINT ATTRACTION.

c xx

g x:ssssssssssssssssssssssslsssostsssssssscslssosssstsssssssssstssscs -
b4 e

C 1288 THE FOLLOWING, MARKED YITK 8, IS FOR ATTRACTION TO SPACE LINES/POINTS U

c 18

c

c

¢

¢

c

c

c

c

c

c

c

c

~

(]

c

c

o

3
3:!! CARD : ATYP,ITYP,NLN,NPT,DEC,AMPFAC -~ FORMAT(AB,12,215,2F10.9) -
P .
b 3 ] ATYP - TYPE OF ATTRACTION. (XI FOR XI-LINE ATTRACTION,
28 ETA FOR ETA-LIME ATTRACTION.) LEFT JUSTIFIED. IR
z8 e
4 ] ITYP - ZERO GIVES ATTRACTION OM BOTH SIDES. _
38 NON-2ERO GIVES ATTRACTION ON URPER SIDE AND
b { REPULSION OMN LOVER SIDE.
¢
o
N )
AT
.
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zs NLNM - NURBER OF ATTRACTION LINMNES.

18

b 3 NPT - NUMBER OF ATTRACTICON POINTS.

18 (NOT INCLUDING PJINTS ON ATYRACTION LINES)

)

L 4 DEC - NON-Z2ERO DEC USES DEC FOR DECRY FACTOR.

g

8 ANPFAC - NON-ZERO AMPFAC MULTIPLIES ALL AMPLITUDES BY AMPFAC.
£ § 4

S82% CARD t NP - FORMAT(1S)

8

b § NP - NUMBER OF POINTS ON THIS ATTRACTION LINE.

s

$83% CARDS : XPT,YPT,APT,.DPT,UEC), VEC2 - FORMAT(6F16.9)

) ¢ ]

] XPT,YPT - COORDINATES OF ATTRACTION POINT OR

18 POINT ON ATTRACTION LINE.

¢

b 4 ] APT - ATTRACTION AMPLITUDE (NEGATIVE REPELS).

38

18 DPT -~ DECAY FACTOR.

b 8

1 VEC1,VEC2 - X,Y COMPONENTS OF UNIT VECTOR NORPAL TO

p § ATTRACTION DIRECTION FOR POINT ATTRACTION.
4 ] (CALCULATED INTERNALLY FOR LIMNE ATTRACTION.)
8

b §

Y o eseas e aes Ce et tas et s
¢

22¥ THE LAST CCORDINATE SYSTEM CONTROL CARD IS THE FOLLOWING CARD :
D 3

£33 CARD : IFAC,IRIT,EFAC - FORRMAT(2I15,F10.09)

(CAN BE USED TO AID CONUERGENCE BY CONUERGING FIELD )
(UITH LESS ATTRACTION FIRST AND USING THIS RESULT )
(AS THE INITIAL GUESS FOR STRONGER ATTRACTIOH. )
(BLANK CARD MUST BE INPUT [F THIS FERTURE IS NOT USED.)
(STAMDARD IS YO NOT USE THIS FEATURE , BUT ITS USE MAY)
(BE NECESSARY UITH STRONG ATTRACTION. )

IFAC - NUMBER OF STEPS IN ADDITION OF INHOMOGENEOUS TERN.
DOUBLES INHOMOGEMEOUS TERM AT EACMH STEP.

(ZERO CONUVERGES WITH FULL ATTRACTION. }
(1.0 CONVERGES WITH NO ATTRACTION FIRST, THEN )
(JITH FULL ATTRACTION. 2.9 CONUVERGES WITH NO )
(ATTRACTION FIRST, THEM UITH HALF, THEN UITM FULL.)
(INCRERSE NUMBER OF STEPS IF DIVERGENCE OCCURS. )

IRIT - NON-ZERO VALUE CAUSES INHOMOGENEOUS TERM TO BE PRINTED.
EFAC - MULTIPLE OF COMUERGENCE CRITERICN 7O BE USED FOR
INTERMEDIATE COMNUERGENCE BETWEEN ADDITIONS OF
INMOMOGEMEOUS TERAM. (TYPICALLY 10.0
2% CARD : LDEP,LDOUT,LDOP,LDEPF,LINP,LCCH,LTES,LSHO -~ FORMRT(BIS)

¢ THIS CARD ALLOUS A SEPARATE SET OF DEPTH POINTS ~0O BE INPUT
TO BE USED FOR INTERPOLATION OF DEPTHS ON THE SINAL GRID "0

e XeXeXeXeXs ke X2 X2 X3 X2 e X X2 XXz ke X s Xa X2 X X e XX Xe Xe Xy Xe Xo ReNe e No N o No o X e o No X Na o kaXa Xe X o kX Xe e Xe o Xo Xe ke Ra K]

L XXX EREXEE X KX R4 KX X X R X R N K X X J
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e A tw e et
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BE OUTPUT ALONG WITK THE GRID. THIS IS USEFUL in THE CASE
WUHERE ADJUSTED DEPTHS UERE USED FOR THE ADAPTION WMILE ACTUAL
DEPTHS ARE DESIRED FOR USE UITH THE GRID IN FLOW CODES.

INPUT A BLANK CARD HERE IF THE FIRST SET OF DEPTH POINTS [S
TO BE USED FOR THE OQUTPUT DEPTHMS. IN EITHER CASE THE OUTPUTY
DEPTHS ARE LOCATED AT CELL CENTERS BY AVERAGING THE FOUR
SURROUNDING GRID POINT VALUES. THE (I1,J) OUTPUT DEPTH IS FOR
THE CELL WITH (I,J) AT THE LOWER-LEFT CORNER. )

LDEP - NURMBER OF DEPTHW POINTS.
( ZERO FOR NOM-ADAPTIVE SYSTERM )

LDOUT - NON-ZERO ADDS OUTER BOUNDARY POINTS TO DEPTH POINT
LIST, WITH ZERO DEPTH.
( THIS SHOULD BE USED UNLESS THE INPUT DEPTH POINTS
EXTEND TO OR BEYOND THE OUTER BOUNDARY. INPUT DEPTH
POINTS THAT ARE COINCIDENT YITH OUTER BOUNDARY POINTS
viLLl :ETAIN THE INPUT DEPTH EVEN WHEM THIS FEATURE
1S USED. )

LDOP - { PRINTS DEPTH POINTS.
LDEPF - NON-ZERO READS DEPTH POINYS FROM FILE 16.

LINP - INTERPOLATION TYPE : © ) HARMONIC - ALL

13 > BILINEAR - 3 POINTS
14 > BPILINEAR - 4 POINTS

¢ > 2-POINT TAYLOR SERIES
3 > 3-POINT TAYLOR SERIES
4 ) 4-POINT TavYLOR SERIES
S > S-POINT TAYLCR SERIES
-2 ) HARRMONMIC - 2 POINTS
=3 ) HARRMONIC - 3 POINTS
-4 > HARMONIC - 4 POINTS
-5 > HARMONIC - S POINTS

~

'ESTﬁREi3.3.3.'a,'3)

LCOR - NUMBER OF INTERPOLATION POINT SETS FOR TAYLOR. ( 4 )
POUER FOR HARMONIC. ( 2 )

LTES - NON-ZERO REQUIRES SUCCEEDING POINTS TO SURROUND
INTERPOLATION POINT. ( USE THIS )

LSMO - 1 SUPPRESSES DEPTH SMOOQTHING.

X2 CARDS(LDEP) : XxDEP,YDEP,DEP - FORMAT(JF10.0)
XDEP,YDEP - X,Y COORDINATES OF DEPTK POINT,
DEP - DEPTH,
SXXXSEEENETLLSLSIRILSLLTIRASETILSERR LSRRI ERAESRRLIRIIILRARTIIRINELX
MASS STORAGE FILES ¢
RESTART FILE - READ FROM FILE 14 , JRITTEN ON FILE 15 !

RFESTART CAN BE FROM PARTIALLY OR FULLY CONUVERGED
INITIAL OR ADAPTIVE GRID.

OO0 OOOONDOOOOOOOOOO
(X XXX X XXX R EEEEEEEEEXEEEEZEEEIE XYY EZ XYL XN Y YN YEY R NYNE XN ]
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P Y O T R TR VI Y S R AW W A Sl ‘b duie ghocaiuiat, Bt A s W A e R
fodufte fat\liate e/l B il RSt S e

)

't ¢ 1

. c = (14) RXI,RETA,d, UL, W, WFAC, OFAC, DEP, XDEP, YDEP

; C % (14) X,Y,LSLIT,LABEL, IMAX, JMax

’ c 3 (14) NBDY,NUMB,LB1,LB2,L83,LTVPE,LPT,X_,XU, YL, YU,

! c 3 DIMI,DIMJ,DIMP,DIMB,LACC,UACC, NEUOUT, NEUBOD, IT1
c s

. C 8 COORDINATE SYSTEM STORAGE FILE - FILE 11 1

. cC 3

r c (11) LABEL, IAX, JMAX

: cC 1t (11 CCLSLIT(I,J), I«1,IMax), J=1, JMAX)

; cC 1t (11) ((X(I,J),Ie1,IMAX),Jel, JMAX)
c 1t (11) ((Y(I,J),1«1,IMAX), o1, JMAX)

I ¢ z (11) ((YUI,0),1«1,IMAX), Jel, JMAX)

- c t (OMITTED IF NDEP«®)

S c 1t (11) NBDY,NUMB,LB1,LB2,LB3,LTYPE,LPT, XL, XU, VL, U,

N c z DIMI,DIMJ,DIMP,DIMB
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The following files are defined:

BAYR1 = CDC run stream file.

) BAYD1 = File containing (x,y) location and the value of depth points.
4 One depth point per line.

BAY1 = File containing (x,y) location of boundary points. One point
per line.

RPLOTA = CDC plot run stream.
CSPLOT = Plot code source.
WESCORA = Grid code source,.

BAYR1

7308

3 JFTIXXX(T10,CRI00000, P4)

- USER, . .KOE,

CHARGE , . .

SBULIN,AB=77777.

GET, OMESCOR.

: GET. TAPE12BAYD1 .

' GET, TAPE16+BAYD2.
GET, TAPE10<BAYL .
OJESCOR.
REPLACE , OUTPUT=OUT.

. REPLACE, TAPE 15 < RESTART .

. REPLACE , TAPE11+SOLN.

g DAYFILE,DAY.

. REPLACE , DAY,

. EXIT.
REPLACE, OUTPUT=0UT.
DAYFILE, DAY,
REPLACE , DAY.
/EOR

- ADAPTIVE

- CHESAPEAKE BAY

' % 28




K e U LW S TP WY WY ) .

19 2t 66 -12
66 60 23 -1l
39 28 60 -12
60 S57? 28 -1l
e 21 57 -12
s? 39 31 -t
a1 23 39 -12
39 37 23 -1
23 21 37 -2
37 34 22 -1l
et 28 34 -12
34 30 28 -ii
28 21 30 -12
@ 24 21 -1l
et 28 24 -12
24 2% 28 -ti
28 21 21 -12
el 1 21 -1}
a1 28 15 -i¢
15 12 28 -1
28 2% 12 -ie2
12 11 as -1
2s @28 11 -12
11 g8 28 ~-11
28 21t 8 -12
8 4 21 -11
el 28 4 -12
4 1 28 -11
28 11 1 -1
11 1 1 -1e 1
31 33 6 -1
6 ?7 33 -2
3 31 7 -1
7 6 31 -2

98 1 @ 1 13 1 1 1
1.0 0.001 9.001 0.0 0.9 0.0
1.9 1.6 1.9 1.9
98 1 (] 1 13 1 1 L
/EOF
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55.90 10.4 100.0

5.0 6.55 100.0

i 100.0 °
.7 1“0.
8 100.0
.g 100.9

18.8 100.¢

B5

‘1

\

ORCRORIN T e T R DA AT o N ‘ ettty
FAA) '_}..r A"’.LA""'\.P . WIS S PR RN .0'.1"".4".;'4 ~ A\_l "2 '4\__‘"4 Y. \A A\.ﬁ.\.&ni.l.‘l;‘_;-n \ Y \.‘j \ oy \-'.\'L L k_!._s_x

F R TP TP L RN UL ARSI WL BL (PN PP S
-, Nt




o o ey ' & X .~I.l.v. EaN M : v . <,
2, e 1 Aol IGRNEEEE!  IRRAREY,
-\DAA—MJ 'Ull-.-‘“-.\t)\} .".\.-'h.t-'l-fn\ ;l.j .o..A..-......,.v.. e, ... !

4

7
1

ot

[ X X ] L ] L] [ ] L] ® ® [

- L4 - . L2 L) L4 L d . *
]

L 4
233 g ¢ &8 ¢ 8 ¢ ¢
-l ot oo -t -4 -y -d -4 - -
® N
HAYRIWBDRNMIN-Tos oY - n NN N h

AN ¢+ o ¢ 0 003 0000 DO ~OO~OROONMULONrSONT-IM

o o DWWV ARWOARNENEI ¢ o ¢ ¢ ¢ o ¢ 0 s o 0 0 0 s 9 ¢ 0 9 o & ¢
[ DO COETVOOVONNOROOONNN K
; w_ow_w W
. COVONOMPOMTRVOAUNVTNOPIO~PO~ONTMUMA

.o-.o¢co.oocooooocotoo-.oo..oooossaqus
. 00~V OONONPNOIOR=POORRVNN-N- DWW + v o o o °

p R Y P Pu- R e P e e e R I T 1 v G A R A VN L Sl o
Al
Illcl. - Qllll?d#. x, ll - LY, 1 YR YRR ..l.l... ‘I.L.‘ih T 1 e "




+
-

.y

~

WURRP | LN 2 Oy
o PPN AR e . £

VV-#..I! \\ s s AN | OONMANEE ANSRSTMOIY] (SRR CAAAMPGUNE PR ) \x.-
ww\.f\-fmn\b .LI l» “ 2 R-.q..\...”.-‘“..k.-t..s- ' ., . . .. ..W ’ |1 ”n ”--!-”-- \‘

!

Ll
g
*d
d

te e
¥ g

RN,

R
"““”..1"..‘...‘."..“‘7?3.2"9..‘.73-“..3’583““77"". ° N
o & o ® ® o & © & ¢ o ¢ O o o o & 0 ® © & & & & O & & o 6 O 5 ¢ O O O 9o o & o ® & & & o ¢ O & o & o o o .’ .lh..
""".....‘......“““‘3‘!’33334455““““5“‘.““?77.. v...-‘A
ot e
> ~ A
< &« Y
<
'“ HOVOTHNOVLVL-BNLVLOWVOO "‘esss.’ BNV ~NBROONOOIO-NAOM R
[_ 1 I\ “..’..ooo.c"““?o’a.o’cco‘ooo on‘o".“a‘o‘o‘o&-ﬂooaoooooooooooo L
e o & 0 0 ® o o o o -t [ . J -e -
77.:‘....."'1. -l ot 11121!1!113 a 8anu””33333333333““3””“3“”"”"“ B
b
e
oY
Y
'
N
B
.....L
. .U
.I'L
o
..4..
...M-h
ad




L4t b |

Lah &

LA SR R e as

Clan 2 o

T

YT Yy

WS B S EETYT Y wewr

("
$

2R3 A2RARRRR22E28KEIRARS

® & ® & 0 6 &6 ¢ & ¢ & O ¢ 0 0 ® 0 p > o e s s b0

&
»
AVOVOWOVOVINO -+~ RUUBRIONOO» W

SHbdd [ X X
e o 0 0 06 06 060 0 0
BIBNONVIINN

B8

¢« ® o & & 6 & o

L 1y T 1% 1 ]

phe o o
T I T 4 YY" XN

B 10 +o 00 4o 50 5o 4o 0 B0 00 b0

( I 1 1 1 LT 1
NN ORN~OO®

e © & & © & o o




e I N ETE

- e &

Foa.¥FTITITTTE

A o

[ S S AR P AR e sl oAl i s

KRRV b ¢ DA AR A Bl Tl A N g Wi S i SA S b S ey 8l S i o

GONCTVCTHAUNTIONR=BRNBOINN

'...'...3'.444““““..5"38773...18.15.4 . ............o...-....cucucucnl..cucucuat

gelnrovesnenunednrrounliBannn-nnaca vae il enaliiennnnensene
BCL LR 888 ccsane AR RR8823a 3R R R 2R L RRARRERRARGELLELE

B9

. N~

Ao a2

e ~

K
a s

Lt

LS

S L I N

T
- St

~
S d

o
LN

PN

“»
=

u-.-
-

-

P PR

A
P

S AP RSP,

.
o

e

‘. ‘.
P TSI PO
SaMat -

Aa

TR

L

A AP PP I




'.".1"“'.3.."‘32.9‘4‘7..7.’7‘33—“‘3:21..523’33433"4'333
.....‘.'.C‘...........‘....Q.'.......'............‘.Q.......
....',3:‘44““"““555-‘“‘31—3‘55“““55‘43333444“3333!"
..01.'.0..l“““"“““““t“10ClloI.clc.o0&...11.1".‘1".“1"““““‘1‘11‘

“..‘.'.“7.7 ‘3‘““.7“3'51.‘.‘3533’.‘3.‘3‘.“"..7 TeT~oueronoNen

........l.....‘..‘...............l...l....'.................

AR LSS SELI 000 b 058084 T TS EETFTRLEE T TS TR S S ELLLLLP T

B10

‘e -

RN I

P R

LY
.
-

‘e
» ® o
(A

A

.r'.'* .




o.soooo.ooaovo'

e o e & o o & o
WNOOOOOVBAOMNNNGLOANANRN N L00®

BIRRARIINBEE22RREN28SBAY

L]

lod s 14
0 oo s
L] [ ] L ]
nen

18.7
18.7
18.8

19.0
18.3
19.9
19.

20.0

N
® 6 e & &% o o o O o

o P o pb 50 08 0 B0 B b8 4 bn b= b B8
&G W) () = o b0 e 0 50 00 o pe

ABNWONNOBOUBINWWLLLE

| g
"

''''''''

Ld -l-";.‘.‘.‘...‘ ‘.. 3
Alawist



————

. Ve LW TN e

TeTTewY

.33457'.‘5373’5‘

¢ © o o & & O o
32“1“11‘234455‘
4 94 ot St St TN O 4 T4 GO T4 T4 90 o4 o

43’:“1.. *
‘clc-c.“‘l’

ARt M e it i B i St

LR 1 1 1" T dol-Tul 1 A& g

.4771‘1“514371552”5‘.3'l4!'1331.

& & 0 & 6 8 & & & & ¢ 6 & o O

.777‘6555556‘7777‘6“5433334“44

FOME IO A ¢ ot o
B ¢ o4 o4 o4 00 0% o0 v 94 oé 4 Tt o4 v 8

B12




W ATE W TN T A

-

R

AW

'.4"“'.”3‘.63‘1‘1—“44544‘

...................Q....‘..

CYY TS X T DL T 1 T AT IT L L L Lo ol ol ad

.."“ ‘."4.3"0.......00

cmmeameceeimmnmmnnr BARGELRAGARRA

Bi3




>
RPLOTA RS

-JOB
BHJLXXX(CN377700,T18,P4) ot
USER, . . +XKOE. SRS
CHARGE, VY . ™)
GET,GCS,0LD-0CSPLOT,0PL FIL. e
‘ COPYL,OLD,QPLTFIL,0CSPLOT,,AR.

REVIND,OCSPLOT,

GET, TAPE1Q<SOLN,

RFL, 140000.
CALL,GCS(1=0CSPLOT,DEV=GCST4L)

e SOCY Y Y,

i

’
B

PR

LS e

7

1,7’

REPLACE, TAPEE6-PLOTCS. e
. DAYFILE, DAY. Y
S REPLACE, DAY, R

EXIT.
REPLACE,OUTPUT =BADOUT.
DAYFILE, DAY,
A REPLACE, DAY.
n /EOR
. ) Q Q ]
] "] "] L ]

. 11.0 8.9
/EOF )

N T T e T RS N . . . .

O . oL - . LN . M e L T T P T N O S S [
S I s R I Y -.'ﬂi'-"",-'l‘_h"-.' S R O Tt St Rt S Y T T RO
VEERIIE N G 2 L ST, ST, DRI D S Lt L R S iy




| S T R P A L S Y

v v e
{I "
‘ L SRE] .
2l
S

e
1

5
-

h

LR

e

3 As can be seen, the day file from both a grid generation run as well as

T
AR
28

l.fl'

]

a run to generate a coordinate plot is stored in a permanent file called DAY,

[:’.’
3

Printed output from a grid run is stored in a permanent file called OUT. The
following sequence of commands would be issued from a Tektronix terminal to
first run the grid model, then run the plot code, and finally to plot the

boundary-fitted coordinate system on the screen.

GET,BAYR1

Creates a local file called BAYR1 from the permanent
file BAYRT1,

SUBMIT,BAYR1 ~ Run stream BAYR1 is submitted as a batch job.

YEDIT, DAY ,P - Logk at day file to sce if the grid run was successful.
XEDIT,OUT,P ~ Look at the printed output from the grid run., R

GET,RPLOTA -~ Creates a local file called RPLOTA from the permanent
file RPLOTA.

SUBMIT,RPLOTA ~ Run stream RPLOTA is submitted as a batch job. e

XEDIT,DAY,P - lLook 4t day file to see if the plot run was successful. ;a!!
OLD,PLOTCS { o

LHN [~ Coordinate system is plotted on the screen

BIH
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